sososo提示您:看后求收藏(畅读书坊www.chfree.com),接着再看更方便。
其中,第一种方法就是黎曼积分,第二种方法就是lebesgue积分。
“……不过,我们现在遇到了一种问题,那就是怎样定义相同面额钞票的数目。也就是怎么定义一个集合的大小!”
顾律盯着下面认真听讲的同学们,语气严肃的开口。
“在这个时候,你们之前学的测度理论便派上了用场。”顾律接着讲道,“既然我们有了测度,有了测度空间,那接下来就要定义可测函数了!首先要给一个判断可测函数的标准……”
顾律在讲,同学们在听。
顾律讲的很认真,同学们听得也很起劲。
甚至不少同学一边听着顾律讲课,一边心中大呼过瘾。
因为顾律的讲课方式,完全给他们一种不一样的体验。
由浅及深,层层推演。
眼前这位顾老师,在讲lebesgue积分这个模块时,并非是按照他们想象中那样,直接告诉他们lebesgue积分是什么,它有哪些性质,如何进行应用,诸如此类的这些。